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What is RNAi ?

o RNAi is a cellular process by which the expression of genes is
regulated at the mRNA level

o RNAi appeared under different names, until people realized it
was the same process:
e Co-supression
o Post-transcriptional gene silencing (PTGS)

o Quelling
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' Nature Biotechnology 21, 1441 - 1446 (2003)

From petunias to worms

e Inthe early 90's scientists tried to darken petunia’s color by I
overexpressing the chalcone synthetase gene.

e The result: .
_4 Suppressed action of
R ‘.< / chalcone synthetase

e In 1995, Guo and Kemphues used anti-sense RNA to C. elegans par-1
gene to show they have cloned the correct gene.
e Both sense and anti-sense par-1 gene produced the same (mutant)
phenotype. (Hmm! Hmmm! Hmmm!)

e Similar phenomena observed in fungus N. crassa and plant viruses
e The phenomenon was shown to be post-transcriptional, but the mechanism

remained unknown
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From petunias to worms (cnyd)
e In1998, Andny;ire and Craig Mello published something revoluITionary.

A interference

— gene stoncing by double-siranded NA

1. The contral dogma

in Physiclogy or Medicine 2008
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What is the difference between
miRNA and siRNA?

Function of both species is regulation of gene expression

Difference is in where they originate

siRNA originates with dsRNA

siRNA is most commonly a response to foreiﬁn RNA (usually

viral) and is often 100% complementary to the target

e MiRNA originates with ssSRNA that forms a hairpin secondary
structure

o MIRNA regulates post-transcriptional gene expression and is

often not 100% complementary to the target
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Translational Bioinformatics

BIOINF 2016

RNA Folding

Reading: handouts & papers

Overview

o About the RNA and its structure
e RNA structure prediction
o Nussinov and Zucker algorithms
o CONTRAfold

e Prediction from multiple alignments

o Case study: how RNA folding affects influenza adaptation?
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RNA structure

e RNA is a polymer of A, C,6,U

e Base pairs:

H.
N_  N-H-----Q
; D b
R \= N N N-----H-N }
N-H-d R S N
i o R
H
Guanine Cytosine Adenine Uraci

o Each base can only pair with one other base at a time
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RNA secondary structure

Pseudoknot
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Single stranded
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Bulge Loop
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Junction (Multi-loop)

Hairpin
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RNA secondary structure prediction

I
o What makes RNA to fold?
e Problem definition: given an RNA sequence, find the set of base
pairs that is “correct” or “optimal”
o Maximum number of base pairs (Ruth Nussinov)
e Minimum energy (Michael Zucker)
o Search problem: number of possible structures
e 200 bases RNA: >10% possible base-paired structures
e Algorithm: dynamic programming
None of the above two can predict pseudoknots...
(although they are really important)
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Base Pair Maximization - Dynamic
Programming Algorithm

5(i,j) is the folding of the subsequence of the RNA strand from index
i fo index j which results in the highest number of base pairs

OIS =7 T T ToTo

Maximizing Base Pair’
S+ 1,j-1)+1 [ifijbasepair] Sk Sk+1j)
S(i + 1,))

S(ij—1)
max g S(ik) + S(k + 1)

S(i,j) = max

Bifsaipliticdsitiing |

Images: Sean Eddy
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Base Pair Maximization - Drawbacks

e Base pair maximization will not necessarily lead to the most
stable structure

e May create structure with many interior loops or hairpins which are
energetically unfavorable

e Comparable to aligning sequences with scattered matches - not
biologically reasonable
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Energy Minimization

e Thermodynamic Stability
o Estimated using experimental techniques
o Theory : Most Stable is the Most likely

No Pseudknots due to algorithm limitations
Uses Dynamic Programming alignment technique

Attempts to maximize the score taking into
account thermodynamics

MFOLD and ViennaRNA
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Energy Minimization Results

[
Images - David Mount

ryves
o Linear RNA strand folded back on itself to create
secondary structure
e Circularized representation uses this requirement
e Arcs represent base pairing
o All loops must have at least 3 bases in them

o Equivalent to having 3 base pairs between all arcs
© Beros BIOST2055 4-APR-2012 1

Alternative algorithms

e Covariance models
e Gary Stormo
e Sean Eddy - using SCFG6

o Probabilistic modeling over many features
o CONTRAfold [Serafim Batzoglou]

o Calculate average structures
e Sfold [Chip Lawrence and colleagues]
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Covariation ensures
ability to base pair is
maintained and RNA
structure is conserved

Articodon loop
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GENE EXPRESSION REGULATION:
DATA AND ALGORITHMS

MSCBIO2020

microRNA genes and their targets

Reading: handouts & papers

miRNA genes: a couple of things we
know about them

Size

« 60-80bp pre-miRNA
¢ 20-24 nucleotides mature miRNA

e Role: translation regulation, cancer
diagnosis l\wﬂ;

e Location: infergenic or infronic

e Regulation: pol IT (mostly)
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Summary of Players

e Drosha and Pasha are part of the “Microprocessor” protein

complex (~600-650kDa)

e Drosha and Dicer are RNase III enzymes

o Pasha is a dsRNA binding protein

e Exportin 5 is a member of the karyopherin nucleocytoplasmic

transport factors that requires Ran and GTP

e Argonaufes are RNase H enzymes
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Players

A. RNase lll type proteins

human Drosha Porih

human Dicer

B. Argonaute proteins

human Ago2

C. dsRNA-binding proteins
human DGCR8
Drosophila R2D2

D. DEAD-box helicases

Drosophila Armitage

RS-rich RIlDa_RIIDb dsRBD

13742a

DEAD Helicase DUF283  PAZ RiDa_RIDb dSRBD 1,
Az [ 859 aa
WW  dsRBDASRBD 773 22
dsRBD dsRBD 311aa
Helicase 1274 22
—
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miRNA function: some examples

miRNA Target genes Function
C. elegans | lin-4 lin-14, lin-28 Early Developmental timing
let-7 lin-41, hbl-1, daf-12, | Late Developmental timing
Isy-6 cogl L/R neuronal symmetry
miR-273 | die-1
Drosophila | Bantam | hid Programmed cell death
Mouse miR-196 | Hoxb8 Developmental patterning
miR-1 Hand2 Cardiomyocyte differentiation &
proliferation .




microRNAs: some on-line resources

Databases

e mirBase: http://mirbase.org

e TarBase: http://diana.cslab.ece.ntua.gr/tarbase
e microRNA.org: http://microrna.org

Target predictions

e TargetScan: http://targetscan.org

e PicTar: http://pictar.mdc-berlin.de/

e miRanda: http://www.microrna.org/microrna/home.do
e mMIRDB: http://mirdb.org
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miRNA computational
predictions

o miRNA gene prediction
o miRNA features
o Gene prediction methods

o miRNA target prediction
o Physical characteristics

e Target prediction methods I W ITTITTT]

2019 18 17 16 15 10 13 12 11 10 05 08 07 0 05 04 03 0Z 0T
i

high overall free energy (<10% of perfect match)
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In the beginning, miRNA genes were
identified...

e Inthelab I
e Forward genetics: start from the mutant phenotype and look for the
responsible gene

Very slow, inefficient (can only be applied to certain cases)

o cDNA sequencing: size-fractionate RNA, clone, sequence
Slow, expensive

o Deep sequencing of small RNAs (e.g., 454, Solexa)
Expensive, we do not know how many small RNA flavors exist

o In silicomethods
Conservation-based
Clustering
SVMs
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1. miRNA gene prediction

« Computational prediction

Structural features (e.g., hairpin length, thermodynamic stability,
etc)

Sequence features (e.g., nucleotide content, location, etc)
Evolutionary conservation

* Methodologies
Neighbor stem loop searches (identify closely located stem loops)
Gene-finding (identify conserved genomic regions, then run MFold)
Homology search (direct BLAST searches)
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1. miRNA gene prediction (cntd)

* Programs

 miRseeker (Lai et al. 2003): assesses folding patterns of RNA
sequences conserved between two Drosophila species

 MiRscan (Lim et al. 2003): uses RNAFold to find hairpin
structures in evolutionary conserved sequences (in worms)

* Berezikov et al. (2005): uses phylogenetic shadowing together
with other properties to identify miRNA genes

* Kadri et al. (2009): uses hierarchical HMM with no evolutionary
information
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Hairpin Extension miRNA  Pri-miR ext
(bases) (bases) (bp mostly)  (bp mostly)  (bp mostly)

Mean (SD)

Vertebrates 86.7 (13.8)
Invertebrates 918 (13.1)
Plants 1195 (43.2)

7.3(35)
79 (39)
6.8(3.7)

220(09) 12.6(7.0)
222(13) 138(59)
213(10) 125(9.9)

Min - Max

3-22 0- 34 16 - 26 0-50
Inverfebrates 54-216 | 3-30  0-55 18-28 0-32
Plants 57-337 | 3-35 0-102 16-24  0-78
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Vertebrates 55 - 153

HMM example: '
the dishonest casino @ﬁ

Classification Problem

0.95 @ mo"’ Given the model, parameters

1:1/6 1: 1/10 and a set of observations
' ’ can we determine if they
2:1/6 2:1/10 come from the fair or the
0.05 - Joaded dice?
E|3 16 | —=—>|3: 110 |g Q: what is hidden?
=
416 | =410 g
5:1/6 RV /\ /\
6:1/6 6:1/2

O=0O
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Hierarchical hidden Markov models

q!
¢ Internal States
¢ Production States q q. q; q
¢ End States
” 3 3 3 3 3 3
* Parameter Set A, (& 4 4. 9 D 4.

Fine et al., 1998; Machine Learning, 32, 41-62
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HHMMIR model based on miRNA
stemloop characteristics
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Parameter estimation:
Baum-Welch vs. MLE

Sn(sb)  FDR (SD)
Baum-Welch 0.84 (0.19) 0.12 (0.06)
MLE 074 (0.14) 0.16 (0.08)

Baum Welch  qocane

12

1 positive rate (Sensitivity)

0W 010 020 0 04 050 06 070 08 0 100
False positiv rate (1- specicty)
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Performance of HHMMIR across
species (trained on human data)

Organism Known hairpins % predicted

—> M. musculus 422 747
\> 6. gallus 147 89.1
= o > D.rerio 334 883
. _s Celegans 131 855
__, D. melanogaster 143 93.0
_, A. thaliana 114 97.4

0, sativa 188 857

~] / Total 1479 a1
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Comparison of HHMMIR to
tripletSVM

Test set Known ins  tripletSVM (%) HHMMIR (%)
(at the time)
New human hairpins in registry at the fime 39 923 974
M. musculus 36 944 88.9
R. norvegicus 25 80.0 840
6. gallus 13 84.6 100
D. rerio 6 66.7 100
C. elegans 110 86.4 90.9
€ briggsae 73 959 959
D. melanogaster 71 916 95.8
D. pseudoobscura 71 90.1 98.6
A. thaliana 75 920 97.3
O. sativa 96 94.8 86.5
Epstein Barr virus 5 100 80.0
TOTAL 620 91 93.2
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To summarize...

Ab initio miRNA stemloop prediction
o The fundamental miRNA characteristics are similar between very
diverse taxa (vertebrates, invertebrates, plants)

o HHMMIR: first HMM-based approach for classification of microRNA
precursors
o HHMIR classifies known miRNA genes from distant species with high
accuracy

e HHMMIR uses structural and sequence characteristics of distinct regions
of the miRNA precursors

© Benos BIOST2055 4-APR-2012 a1

Identifying miRNA genes from
deep-sequencing data

Humina Reads(fer base caling) I
o et

Quality Filtering of reads

> E

Trim adapters|

Minimum length filter (>=17nts)
e -
Colapse identical reads
e =
Maximum length flter (<=26nts)
pe o

Remove tRNAS, rRNAS, saRNAS, SnoRNAS

Map to genome
Novel >~ - Conserved 'BLAST for

o BUAST for miRNAS &
miRDeep’ conserved piRNAS
o1 pedctirs. miRNAS & k- 30 s
piRNAS
S | Compare c
reads returned as
potential navel
miR
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miRDeep: taking advantage of
sequence read number

Nature Biotechnology 26, 407 - 415 (2008)
doi:10.1038/nbt1394

Discovering microRNAs from deep sequencing data using
miRDeep

Marc R Friedidnder?, Wei Chen?, Catherine Adamidi®, Jonas Maaskola®, Ralf
Einspanier”, Signe Knespel* & Nikolaus Rajewsky>

The capacity of highly parallel sequencing technologies to detect small
RNAs at unprecedented depth suggests their value in systematically
i (miRNAS). the ion of
miRNAs from the large pool of sequenced transcripts from a single
deep sequencing run remains a major challenge. Here, we present an
i iRD which uses a model of miRNA
biogenesis to score compatibility of the position and frequency of
RNA with the Y of the miRNA
We demonstrate its accuracy and robustness using published
Caenorhabditis elegans data and data we generated by deep
sequencing human and dog RNAs. miRDeep reports altogether ~230
previously unannotated miRNAs, of which four novel C. elegans
miRNAs are validated by northern blot analysis.
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miRDeep: the idea

a Sequencing reads

miRNA Mature
precursor miANA Lo

P
3
— DO >__D>" "0
T Star soquence T °

Dicer cleavage Deep sequencing

Non-miRNA products
Sequencing reads

= 5
1

Non-miRNA

Non-Dicer processing Deep sequencing

or degradation
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Desp sequencing reads Optional

miRDeep:
the pipeline N '

to many genormic loci
Optional: discard reads that
map to rANAS, 1RNAS, etc.

v

=D Use sequence reads
1o excise potential

! [ miRNA precursors
from the genome

&) = Discardunikely

mIANA precursors

v

=) miRDasp core aigoritm:
o probabilistic scoring of
Strucure end signature

Y\
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miRDeep: some results

a . b c
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2. miRNA target prediction

* Physical characteristics
5’ end “seed” conservation (6-8 nt long)
Compensatory 3’ end (to increase miRNA stability/efficiency)
Multiple target sites: are they important to have?

Structure of the target sequence

21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01
L 1L ]

3' part mismatch sensitive 5' region
tolerates up to 4 mis-  max. 1 mismatch

matches, but not more

than 2 in a row

cleavage site
no mismatch

high overall free emergy (270% of perfect match)
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2. miRNA target prediction (cntd)

* Programs

« Stark et al. (2003): detecting base complementarity on the
5’ -end 8 nt seed w/ evolutionary conservation — MFold to
calculate stability

* RNAHybrid (Rehmsmeer et al. 2004): new RNA folding
algorithm; uses only 6 nt at the 5" -end seed (nts 2-7)

« TargetScan (Lewis et al. 2003, 2005): uses only 7 nt at the
5’ -end seed — RNAFold to calculate binding energy

* DIANA-MicroT (Kyriakidou et al. 2004): focuses on single

target sites; seeks targets w/ central “bulge” and 3’
complement

© Benos BIOST2055 4-APR-2012 48
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2. miRNA target prediction (cntd)

* Programs (cntd)

* miRanda (Enright et al. 2005): uses weight matrices to
emphasize 5" -end binding — RNAFold to calculate binding
energy

* Xie et al. (2005): whole genome conservation scan identified a
large class of 8 nt motifs (not a formal miRNA finder)

* rna22 (Miranda et al. 2006): seeks overrepresented motifs in

3" UTR of the genes — Vienna package to calculate binding
energy

© Benos BIOST2055 4-APR-2012 49

rna22: a different strategy

remove duplicate and near-identical
entries from the set of mature
sequences in the RFAM database

e Start: 644 mature miRNA sequences
(2004 version of RFAM)
e End: 354 sequences with <90%

identity (training set) process remaining sequence set to find
intra-and inter-species patterns of

Input
Preparation
—r

et conserved sequence features
e Pattern identification: Teiresias (on g §
the training set) %3
e Significance: compare to a 2nd order
Markov from the genome
o Eg:[ATICELTTTTTIC6IG.[AT]
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Mutual Information in RNA
structure prediction

Sy )
S (x) £y (v))

IX.Y)= 33 fry(x,y,) log
o,

GGECUUGUNBETEACCY:

GCCCCCAUCGUCUAG

UGAUUA

C
UGGGECEUA

JAGCGU
UCCUUGUUAGEU
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rna22: a different strategy

Start: 644 mature miRNA sequences

(2004 version of RFAM)

End: 354 sequences with <90%

identity (training set)

Pattern identification: Teiresias (on

the training set)

Input
Preparation

Pattern
Discovery

Significance: compare to a 2nd order

Markov from the genome

Eg: [ATI[C6LTTTTTIC6IG.[AT]
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remove duplicate and near-identical
entries from the set of mature
sequences in the RFAM database

process remaining sequence set to find
intra-and inter-species patterns of
conserved sequence features

filter discovered patterns keeping
only statistically significant ones

rna22 (cntd)

e Target islands: “hot spots” with 230
statistically significant mature miRNA

patterns

Identification
of target islands

o Results: rna22 identifies correctly

17/21 “new” full-length sites

Assignment of microRNAs
to target islands.

© Benos BIOST2055 4-APR-2012

generate the reverse complement
of statistically significant patterns.
and locate their instances in
the target UTRs

identify “target islands” supported by
a minimum number of pattern hits

pair-up each target island with
‘each candidate microRN/

identify & report

microRNA/target-island partners
whose interaction satisfies
user-specified thresholds

rna22 (cntd)

© Benos BIOST2055 4-APR-2012
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rna22: results (cntd)

nnnnn
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rna22: evaluation

e Advantages I
o Predicts miRNA target genes w/o knowledge of the miRNA gene
o No need for evolutionary conservation

e Performs better when miRNA genes have multiple targets in the same
mRNA

o Disadvantages
o No consideration of the miRNA constrains per se (e.g., 5" “seed”)
* May miss target genes with one or few target sequences in their 3’
UTR

o Number of false positives cannot be estimated
o Heuristics
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