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The concept of large margins have been recognized as an important principle in analyzing learning methodologies, including boosting,
neural networks, and support vector machines (SVMs). However, this concept alone is not adequate for learning in nonseparable cases.
We propose a learning methodology, called v-learning, that is derived from a direct consideration of generalization errors. We provide a
theory for y-learning and show that it essentially attains the optimal rates of convergence in two learning examples. Finally, results from
simulation studies and from breast cancer classification confirm the ability of 1 -learning to outperform SVM in generalization.
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1. INTRODUCTION

Recent advances in machine learning have been driven by
the recognition of importance of large margins, for instance
in analyzing generalization of boosting, neural networks, and
support vector machines (SVMs). The concept of margins pro-
vides foundation of the development of SVMs. The SVM was
first proposed by Boser, Guyon, and Vapnik (1992) and Cortes
and Vapnik (1995), and has gained its popularity and attracted
tremendous interests due to its theoretical merits and successes
in real applications, ranging from hand-written digit recognition
to gene classification (see Vapnik 1998, 1999).

The theory of SVM was well developed for separable cases
based on an idea of hard margins. However, its foundation be-
comes much less solid when extended to nonseparable cases. In
such situations, generalization errors that become much more
important have not been fully taken into account in the SVM
formulation. Here we develop a learning methodology called
y-learning. While retaining the interpretation of large margins
for separable cases, ¥-learning delivers improved performance
for nonseparable cases by appropriately controlling the training
ITOTS.

In this article we investigate the generalization ability of
Yr-learning both theoretically and numerically. A theory is de-
veloped to quantify its learning accuracy as a function of the
size of the training sample and the class of candidate deci-
sion functions. This theory is an extension of our earlier results
(Shen and Wong 1994; Wong and Shen 1995; Shen 1998) from
function estimation to machine learning. The theory not only
explains why i -learning is expected to deliver high-accuracy
performance, it also has an added bonus in that it reveals the
trade-off between the learning choice of a tuning parameter
and the size of a candidate function class. As suggested by the
present theory and simulations, v-learning indeed has a theo-
retical advantage.

Although we demonstrate that yr-learning has the poten-
tial to deliver high performance, the computational aspect of

Xiaotong Shen is Professor, The Ohio State University and University of
Minnesota, School of Statistics, University of Minnesota, Minneapolis, MN
55455, USA (E-mail: xshen@stat.umn.edu). George Tseng is Assistant Profes-
sor, Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261,
USA. Xuegong Zhang is Professor, Department of Automation, Tsinghua
University, Beijing 100084, China (E-mail: zhangxg@tsinghua.edu.cn). Wing
Hung Wong is Professor, Department of Statistics and Biostatistics, Harvard
School of Public Health, Boston, MA 02115, USA (E-mail: wwong @stat.
harvard.edu). The authors would like to thank the editors, the associate editor,
and referees for helpful comments. The authors are grateful to Grace Wahba
for pointing out a relation between (1 — Sign)/2 and the hinge loss. This work
is supported in part by National Science Foundation grant, DMS-0072635,
11S-0328802, DMS-0090166, and National Science Foundation of China grant
69885004,

Y-learning requires special attention because the minimiza-
tion involved is nonconvex. Further computational development
based on recent advances in global optimization will be pre-
sented in a subsequent article.

This article is organized as follows. Section 2 introduces
the framework of vr-learning and explains its connection with
SVM, and Section 3 presents a learning theory and illustra-
tive examples. Section 4 is devoted to implementation and al-
gorithms. Section 5 examines the performance of r-learning
via simulation and demonstrates that 1r-learning is more ac-
curate than SVM. This section also presents an application of
Y-learning to the Wisconsin Breast Cancer Data for cancer
classification. Section 6 discusses our learning principle. The
Appendix is devoted to proofs.

2. v-LEARNING

Machine learning comprises four key components: an input
space S, an index (output) space O, a decision function f, and
a training sample. This section considers a simple scenario,
known as binary classification, in which O is dyadic, with 1
and — 1 indicating positive and negative classes A4

Typically, machine learning is performed by constructing f,
mapping from S € R? to R! such that its sign, Sign(f), called
a “classifier” in the sequel, decides the class assignment of an
instance x € 8. To train f, a sample (X;, ¥;)!_, of n input/output
pairs is given that is independently and identically distributed
according to an unknown joint distribution P(x, y).

To analyze the learning scenario, we examine learning accu-
racy on inputs outside the training sample. We do this through
an error function that measures the generalization ability. Here
the error function is the generalization error (GE), defined as
Err(f) = P(¥f(X) < 0) = 1E(1 — Sign(¥f(X))), whose empir-
jcal version is (2r) ! S (1 — Sign(Yif (X;))), called the em-
pirical generalization error (EGE).

2.1 Framework

TFor motivation, first consider linear classification, where the
decision functions f(x) = w - x + b are hyperplanes, defined by
the inner product w - x in RA, with w € RY and b € R!. The
basic form of SVM originated from the optimal separating hy-
perplane in separable cases where there exists a hyperplane sep-
arating two classes. The SVM maximizes the separation margin
H—‘iﬂ’ defined by the Euclidean norm ||w| of w, subject to con-
straints y;f(x;) > 1, i=1, ..., n. These constraints enforce “0”
training error. In nonseparable cases, however, these constraints
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are not attainable; thus slack variables {¢;}}_; are introduced
to define the so-called “[; soft margin” %HWHZ +CY G
subject to constraints > 1—yi(w-x;+5b) and >0, i =
1,...,n. The Kuhn-Tuacker constraint optimization theory says
that the solution of SVM satisfies the active constraints in
that either & = (1 —yif ) =0 or 5 =0 0> 1 — y;f (x3),
i=1,...,n, yiclding an equivalent unconstrained version of
SVM,

n
{
5%+ C Y VomOif ), &y
=1
where Ygymi(x) = 0 1f x > [ and Yeym{x) = 1 — x, otherwise.

In our learning framework, SVM included, the primary goal
is to seek a classifier, Sign(f), to maximize generalization accu-
racy. Often a cost function is minimized to obtain the optimal f
and thus Sign(f), which involves the training sample {X;, i}/,
and Sign{f). In principle, one might choose the cost function to
be the BEGE and minimize it with respect to (w, b). However,
EGE suffers from the difficulty of multiple minimizers and the
danger of overfitting. In the area of nonparametric function esti-
mation, such a difficulty is handled through penalization. Thus
here we use penalization (regularization) with penalty %Hw!iz.
In separable cases, the penalty WWZV has been shown by Boser
et al. (1992} to represent the maximal margin or the separation
margin between Ay, Farthermore, it can be used to discriminate
among minimizers when multiple minimizers occur. In nonsep-
arable cases, the use of a penalty has been further emphasized
by Wahba (1998) in a context of nonlinear SVM. The foregoing
discussion yields the following penalization cost function:

i

~{wl? + € ) (1 = SignGif ))), 0

5 .

i=1
where the size of C (C > 0) reflects the relative importance of
the EGE and the separation margin.

Evidently, the discrete nature of Sign makes it more difficult
to optimize (2). It is interesting to note that the SVM cost func-
tion Yrsym in (1} is a convex upper envelope of %(l — Sign). (We
are grateful to Grace Wahba for pointing out this relation.) In
recent years, dramatic increases in computing power and the
development of global optimization techniques have made it
possible to tackle the problem of (2) directly. This allows us
to substantially improve the generalization ability in terms of
the GE, because there is-a difference between a convex upper
eavelope and {1 — Sign)/2 itself, especially for nonseparable
cases. We illustrate this aspect with a linear example in Sec-
tions 3 and 5.

Surprisingly, (2) is an undesirable cost function, because the
minimizer of (2) becomes the zero function when no constraint
on the size of {w, b) is imposed. This is because any positive
scaling transformation of f leaves its sign unchanged; that is,
Sign forces |lwlf of the solution to be 0. To eliminate this scaling
problem, we introduce a penalty function, ¥, to drive correctly
specified instances away from the decision boundary. This ¥ is
required to satisfy the property

U=y >0, ifxe(0, 7]
Yix) = {1 — Sign{x)) otherwise,
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where 0 < ¢ <1 and U > 0 are some constants. Furthermore, it
seems sensible that any correctly specified instance is penalized
less than any wrongly specified instance, which implies U =2
in (3). This eliminates the scaling problem, which circumvents
the difficulty of Sign. For any instance x; such that y;f(x;) > 0,
yr pushes it toward y;f(x;) = 7, because i assigns a positive
penalty to any value in the range of (0, r]. This modification
yields our cost function of 1-learning,

12 - o
5wl +CZw<yﬂx1)>, (4)

i=1

where C > ( is a tuning parameter that should depend on n and
be chosen from data in practice. Based on our limited experi-
ence, the choice of C seems important for both separable and
nonseparable problems.

The basic idea for choosing ¥ is that it should be as close to
1 — Sign as possible, while eliminating the scaling problem. In
this article we use a simple linear function ¥ in implementa-
tion, where yo(x) is definedtobe Qif x> 1,1 —xif O <x <1,
and 2 otherwise. The graph of v is displayed in Figure 1. Other
choices of ir are possible. For instance, we use a different
function, v/, based on a computational consideration, defined
as0ifz>1,2(1 — 2 if 0 <z <1, and 2 otherwise. This con-
tinuous ¥y permits difference convex programming for globally
solving (4) as opposed to ¥g; see Section 6 for a further discus-
sion.
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Figure 1. Plots of (a) ¥ and (b) Yrsym-
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For nonlinear problems, the decision function f(x) is repre-
sented as g(x) + b with g(x) = Y7, ;K (x, x;), defined by a
proper kernel K (-, -) that maps from S x S to R. This is equiv-
alent to applying a certain nonlinear transform on § according
to the theory of reproducing kernel Hilbert space (RKHS) (see
Wahba 1990). Here K (-, -) may be smooth or discontinuous and
is required to satisfy Mercer’s condition, which ensures that
Hgii%( = Z?:l J'-’:l a0 K (x;, x;) is a proper norm. With this
generalization, the concept of separability can be defined sim-
ilarly by replacing the hyperplane representation by the kernel
representation.

The kernel-based cost function of ¥ -learning now becomes

1 n
Slglli +C Y v o ). ®)
i=1

As an analogy, the penalty, || gl[%(, of this form is often used to
enforce smoothness of the regression function in nonparametric
regression (see Wahba 1990). However, here || gﬂ%( may be in-
duced by a nonsmooth kernel. For instance, the neural network
step kernel (Mangasarian 2000) allows discontinuous jumps.

The clasmﬁer of yr-learning then is Slgn(f) where f x) =
Wex+bin (@) or f(x) = Yo &K x) + b in (5), which are
defined by the minimizers (w, b) = (W1, ..., W4, b) in (4) and
@,b)=(a1,...,6n,b)in (5).

2.2 Properties of

We now study properties of 4 to gain insight into the perfor-
mance of Y -learning.

Proposition 1. Let f = Sign(f*), where f* = P(Y = 1]x) —
1/2 is the Bayes decision function. Then, for any i satis-
fying (3), f minimizes EYy(Yf(X)) and E(1 — Sign(Yf(X)));
that is, Ey(Yf(X)) = EY(Yf(X)) = E(1 — Sign(Yf(X))) <
E(1 — Sign(Yf(X))), for any f. Furthermore, the minimizers for
EY(Yf(X)) and E(1 — Sign(Yf(X))) are not unique, for exam-
ple, ¢f is also a minimizer for both quantities for any ¢ > 1.

Proposition 1 says that the method of ir-learning estimates
the Bayes classifier f = Sign(f*) rather than the Bayes deci-
sion function f*. The Bayes classifier is the ideal optimal classi-
fier, obtained by minimizing E(1 — Sign(¥Yf(X))) for all f. This
feature of 1 is essential, because the optimal performance of
f = Sign(f*) is realized by using the ¥+ function although it dif-
fers from 1 — Sign.

Proposition 2. In separable cases, (4) and (1) yield the same
solution when C — o0.

Proposition 2 says that yr-learning with large C values is
equivalent to the hard-margin SVM. When C is large, i en-
forces “0” training error in separable cases, which acts in a par-
allel fashion to the cost function of hard-margin SVM. Indeed,
the two yield identical solutions for large C, as confirmed by
simulation in Section 5.

In summary, ¥-learning and SVM are based on different
principles. It is interesting to note that ¥sym(x) = ¥o(x) when
no ftraining error is committed, such as in separable cases. In
nonseparable cases, the advantage of ¢ over Vgy is that it im-
proves learning accuracy, and the disadvantage perhaps is that
the optimization becomes nonconvex. Here we show that the
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potential gain in error rates offered by use of nonconvex cost
functions is very substantial and suggests that research in op-
timization of cost functions of the form (4) should be a high
priority. Comments on possible approaches to this optimization
are provided in the beginning of Section 4.

3. LEARNING THEORY

To begin, we first consider the ideal optimal decision function
(the Bayes decision function) f* that minimizes Err(f) in the
sense that

inf Err(f) = Err(f") = E1/2— /" ().
It is easy to show that f*(x) = P(Y = 1|X = x) — 1/2. Here we
measure the learning accuracy of f by

e(f.f) = Erv(f) — Err(f*)
= E|f*(X)|| Sign(f (X)) — Sign(f*X)H| =0, (6)

the difference between the actual and ideal performances. As
shown in Lemma 1, e(f,f™) reduces to Err(f) in separable
cases.

Next, we develop a learning theory to quantify the magnitude
of e(f,f*) as a function of n, in terms of the value of C and the
size of G(F) = {Gr = {x : f(x) > 0} : f € F}. Here G(F) is the
class of candidate classification sets, induced by the class F
comprising candidate decision functions. Similar to the theory
of sieves (Shen and Wong 1994), F can depend on the sample
size n, but this dependency is suppressed in our notation.

3.1 Theory

In this section we give an upper bound of the GE of
ir-learning in terms of the complexity and reveal the best trade-
off related to the choice of tuning parameter C. Our learning
theory is formulated on the basis of the size of G(F), measured
by the metric entropy to be defined. For our theory, the ideal op-
timal classification set Gy = {x € S : f*(x) = 0} is not required
to belong to G(F). Instead, it is assumed that f = Sign(f*) can
be well approximated by F. To quantify this approximation, we
consider ey (f.f) = LEY (X (X)) — EY(¥f(X))), which mea-
sures the approximation error.

Let Jo = max(J{fp), 1). We make the following four assump-
tions.

Assumption A. For some positive sequence s, — 0 as n —
00, there exists fy € F such that ey (fo, f) < sy. Equivalently,

inf(re 7y ey (F, ) < sn-

By Proposition 1, e(fy,f*) < ey (fo,f) < sp. If F and f are
independent of #, then Assumption A means that infirc ) ey

f.h=

Assumption B. There exist some constants 0 < ¢ < 400 and
¢1 > 0 such that P(x € S: |[f*(x)] < 68) < c18% for any suffi-
ciently small § > 0.

Assumption B is a Holder type of condition that describes
the behavior of ™ near the decision boundary {x : f*(x) = 0}.

To specify Assumption C, we need to define the metric en-
tropy for sets. For a given class B of subsets of & and any
g > 0, call {(Gl , G'f), (Gl ,G»)} an e-bracketing set of
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B if for any G € B there is a j such that Gjl- CcCGC GJ‘.‘ and
max; ﬁimd{Gf, Gj.) < ¢, where d(-, -) is a distance for any two
sets G; € &, defined as d(G, Gy) = f{Gl AGy) dP = P(G1AGy),
and G1AGy = (G \ Gp) U (G2 \ Gy) 1s the set difference be-
tween G;. Then the metric entropy H (e, B) of B with bracketing
is defined as a logarithm of the cardinality of an &-bracketing set

of B of the smallest size.
Let

Gk ={Gr ={x:f() =0} :fe F,J(f) <k}
COF)={Gr=1{x:fx) 20} :f € F.J(f) < +o0},
where J(f) is 3 |wl|? in (4) and is 4 |gll% in (5) for example.

Assumption C. For some positive constants ¢;3 i =2, ..., 4,
there exists some &, > 0 such that

sup ¢ (en, k) < con'/?, 7)
1)
127 a/2(0+1) ,
where  ¢(en k) = fo HY202/2, G(k)du/L  and

L = L{gn, C. k) = min(e? + (Cn)~Uo(k/2 — 1), 1). For in-
stance, ¢y = 2722, ¢3 = 2V Umax(4(2%F e/ @D 1 2),
g max(l, 2)), and ¢4 = 27°.

Assumption D. For x € (0, r] with fixed constants 0 < 7 < 1
and U, U > ¢¥{x) = (1 ~ Sign(x)), and ¥ {x) = (1 — Signx))
otherwise.

Theorem {. Suppose that Assumptions A-D are met. Then,
for any classifier of yr-learning Sign(f), there exists a constant
¢s5 > ( such that

s —ex2 2R
P(e(f. ) 2 62) = 3.5exp( —esn(nC)~F g ),

provided that Cn > 26, 2]@ where 8,% = min(max(eg, 25,), D).

Corollary 1. Under the assumptions of Theorem 1,
e =050, Ele(f.f)]=0(D),

provided that n T (C~ o) 577 is bounded away from 0.

In any application, we need to verify that the assumptions
are satisfied for 5, — O and &, — 0, then choose the optimal
trade-off for §,. The optimal C that yields the best rate 85
for yr-iearning is determined by two inequalities: (1) C/Jy >
21@‘18; 2 and (2) ClJg is O(n_a"i”f). Usually, a good choice
of C is of order of rf1§; 2,}'0. In this case, if @ = 00, then the
bound in Theorem 1 becomes 3.5 exp(——qné,%); if o — 0, then
the bound there reduces to 3.5 exp(—cmé;‘), where §,, is as de-
fined in Theorem 1.

Remark 1. Although the present theory says that the forego-
ing resuit holds for any i satisfying Assumption D, it is im-
portant to note that the approximation error ey (fo.f) can dif-
fer substantially depending on the choice of ¢r. For instance, if
Y{x) =1/{1 —x) forany 0 <x <1 and ¥(x) =1 — Sign(x)
otherwise, then ey (f, #) could be much larger than ey, (fo, ).
Additionally, the present theory allows fy, f*, and F to depend
on .
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Remark 2. Letf;;i=1, 2, be the conditional probability den-
sities of X given Y = +1. By Bayes’s rule,

/i)
i) + mbx)’
where 7;; i = 1, 2, are the prior probabilities on A... Assump-
tion B is closely related to (4) of Mammen and Tsybakov
(1999) but is different, in that this assumption is imposed only
on f*(x) rather than on any f € F. A similar assumption was
used by Lin (2000) to obtain error bounds for the difference be-
tween f* and the SVM decision function. For Assumption B,
the most interesting case is « = +00. The case of & =0 is ex-
cluded. In any case, this is not of interest, because o = 0 indi-
cates that two classes are indistinguishable in an open neigh-
borhood of the decision boundary.

PY=1|X=1x) = (8)

Remark 3. The integral equation (7) of this form has been
used to quantify rates of convergence of the maximum likeli-
hood type of estimators (see, e.g., Van De Geer 1993; Birgé
and Massart 1993; Wong and Shen 1995).

Remark 4. The result in Theorem 1 continues to hold if the
“global” entropy is replaced by a corresponding “local” ver-
sion (see, e.g., Van De Geer 1993). That is, G(k) is replaced by
Gy =Gy Nnielf.fo) < 2u?}. The proof requires only a triv-
ial modification. The local entropy allows us to avoid the loss
of a factor of log(n) for a linear problem, although it may not
be useful for a nonlinear problem.

Theorem 1 and Corollary 1 provide probability and risk
bounds for e(f f*), with the smallest &, satisfying (7) giving
the best upper bound of the GE of v-learning. Indeed, there is
a trade-off between the value of C and the performance; the best
performance is realized when C gives the best balance between
the size of G(F) and n. Thus Theorem 1 provides guidance in
the choice of C. As discussed in the beginning of Section 3,
this aspect has not been revealed by the aforementioned first
approach.

Finaily, we compare Theorem 1 with learning theories in the
literature. There are two main approaches to statistical learning
theory for classification. The first approach is to bound the GE
of a classifier in terms of the empirical training error and the
Vapnik—Chervonenkis (VC) complexity of the class of candi-
date decision functions. In particular, this gives the following
type of upper bound:

n
Err(f) < inf (n—l > IXF X <8) + C(F, a)/n‘/2>,
§>0 pa
where C(F,8) depends on some kind of entropy related to
{(x, ) 1 yf(x) < 8} for f € F. An upper bound of Err(/?) can
then be obtained for a specific training sample by appropriately
choosing § depending on #n (see, e.g., Vapnik 1998; Devroye,
Gyorfi, and Lugosi 1996; Koltchinskii and Panchenko 2002).
The second approach expresses an upper bound of the GE of a
classifier in terms of the complexity of the class of candidate de-
cision functions and the trade-off between the complexity and
the training error (see Mammen and Tsybakov 1999; Lin 2000,
2002). The difference between these approaches have been dis-
cussed by Mammen and Tsybakov (1999, p. 1811). The two
approaches are complementary with one another. The first ap-
proach is useful when we want a bound for the classification
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error rate based on a particular observed dataset. But because
this bound is random, it cannot be used to compare different
classifiers a priori. For this latter purpose, we have to rely on
the second approach. Although there are some results of the
first approach in the machine learning literature (e.g., Koltchin-
skii and Panchenko 2002), to our knowledge the only published
result of the second approach was given by Mammen and Tsy-
bakov (1999). These authors’ result is applicable only to classi-
fiers that minimize the empirical training error over a compact
class of sets (and therefore are not applicable to ¢ -learning).

3.2 lHlustrative Examples

In this section we apply the general theory to two specific
learning examples.

3.2.1 Linear Classification. Linear classification uses a
class of hyperplanes, F = {x € S:f(x) =w-x+b:we R?},
where S = {(x1, x2) :x% +x§ < 1} in R? is a unit disk and the
true decision function f;(x) is x; that yield the vertical line as
the decision boundary. See Section 5 for more details about the
setting.

With a choice of fy = nf; € F, e,/,(fo,f) < E(y (Yo (X)) —
(1 — Y Sign(f*(X))) < sn = c;n~! for some constant ¢; > 0.
Then Assumption A is met, It can be verified via (8) that
Px e S:|f*"(x)] <§) =0 for any sufficiently small § > 0.
Assumption B is satisfied with o = 4+00. To check Assump-
tion C, we compute the local entropy of G;(k), defined in
Remark 4. Note that e(f,fo) < ey (f,fo) < 2u? implies that

(@)
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log(e(f, 1)}

-5.0
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35 4.0 4.5 5.0 55 6.0
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log(e(f, )
-4.0

-5.0

-6.0

35 4.0 4.5 5.0 55 6.0
log{nobs}
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lw —woll < du? for some ¢’ > 0, where fo(x) =wp - x. Fur-
thermore, mini <j<p |(W —wo) - ;| < |b— bo| < maxi<i<n |(W—
wo) - x;|, because b minimizes Y ;_; ¥ (yif (x;)) for any given w.
Hence for any f € G1(k), |b — by| < |lw — wp]l and [|w] <
(2k)Y/2. Direct calculations yield that H@? Gi(k) <
O(log(min(k;’?, ¢'u?) /u?)) with ki = 2k + Jwol|®)/2. Let

¢1(en k) be (log(min(k)’?, ¢'s2)/e2) /2 /112, where L =
min(s% + (Cn)~1(k/2 — 1),1). Easily, SUPgs P (En k) <
¢ (en, 1) = c/e, for a constant ¢ > 0. Solving (7) yields
a rate &, = n~ /2 when C/max(J(fp),1) is a sufficiently
large constant. From Theorem 1, it follows that e(f, =
O(n~'log(1/8)), except for a set of probability less than small
8 > 0. From Corollary 1, Ee(f,f*) = O(n~1). This result holds
generally for any + satisfying Assumption D, including the
used in the simulations.

The foregoing rate expected to be optimal, in view of theo-
rem 2.1 of Blumer, Ehrenfucht, Haussler, and Warmuth (1989).
As indicated in theorems 4.5 and 4.6 of Bartlett and Shawe-
Taylor (1999), the error rate of linear SVM is a2 in nonsep-
arable cases and n~! in separable cases. As suggested by Fig-
ure 2, the rate of n~ /2 for linear SVM in the nonseparable cases
cannot be improved further when Err(f*) is bounded away
from 0. (Note that it is asymptotically separable if Err(f*) — 0
as n — oco.) In comparison, y-learning achieves a faster rate
n~! of convergence in the nonseparable cases, which agrees
with our intuition discussed in Section 2.

3.2.2 Nonlinear Classification With Smoothness. Consider
a function f(x) with the bounded continuous pth derivative,

<
®
PR
g'_: ¥
kot
k=3
< 9
3 1
o
© T
3.5 4.0 4.5 5.0 5.5 8.0
log(hobs)
@
g
B W
g ¥
n
0
35 4.0 4.5 5.0 55 6.0
lag(nobs)

Figure 2. Plots of Iog(e(?‘, f*)) as a Function of logn for yr-Learning and SVM, Represented by the Vertical and Horizontal Lines. Here
C=10. (a) O-flip (—— SVM: Y = (—0.355) + (—0.926)X; — rL: Y = (—0.355) + (—0.926)X); (b) 1-flip (~— SVM: Y = (—0.421) + (-0.783)X;
— Ll Y = (—0.0256) + (—0.983)X); (c) 2-flip (-~ SVM: Y = (—0.531) + (—0.722)X; — Yy L: Y = (0.345) + (—1.04)X); (d) 10%-flip (—— SVM:

Y = (—1.34) + (—0.455)X; — WL: Y = (0.159) + (~0.944)X).
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where the number of 0O-crossing points of f (x) in [0,1] is
no more than p. A O-crossing point xo of f is defined as a
point such that ]:"m{xg) =0fori=0,...,m with m < p, and
F o f FO (x> 0, where £ is the ith derivative of f and
Fomy {xg ) are the corresponding left and right derivatives.

We assume that the joint distribution P(-, ) of (X, Y) is in-
duced by such a function 7 (x). Specifically, the label variable ¥
ig 1if f (x3 > 0 and is —1 otherwise. Let v be the total length of
G={xed :f(x) > {}}, and assume that v % 1/3.

For this example Err(f ) may be easily computed. The con-
ditional density of X given ¥ = 1 is 2/(1 + v) if f{x) > 0
and 1/(1 + v) if /( ) < (3. The conditional density of X given
Y=—1is1/(2—v)if f(x) = 0and 2/2 —v) if f(x) < 0. In
this case, P(Y = 1) = v and Err(f*) = 931 +1§ > 0.

Nonlinear classification with smooth bounda:ries uses a ker-
nel, K(u, t). For a boundary with the degree p of smoothness
on § = [0, 1], X is the spline kernel of order p, defined by
the Bernoulli polynomials in R! (see Wahba 1990 for an ex-
pression). Here p > 1 is an integer. The spline kernel yields
candidate decision functions with p derivatives belonging to

f=g+b:8gx) =31, wiK( x),J(f) < oco,f has at

most p real roots} with J(f) = fékd g(x)] drandbe R
E‘Gf Assumption A, it is easy to see that there exists a spline
e F thatinterpolates f and the corresponding derivatives at its
O -crossing points. This implies that Szgn(ﬁ(x)) = ozgn(f(x)) =
Sign(f*(x)). With a choice of fy = ¢, 2, ey (o, ) <sp= 1€,
where g, is defined below and ¢; > () is a constant. This implies

Assamption A.

By assumptions and (8}, Px € §: [f*(x)| < 8) =0 for ali
sufficiently small § > 0, which implies Assumption B with
o = 400,

To verify Assumption C, we note that H(u, G(k)) <
Olog(l/u)) for any k by Lemma 2. Let ¢;(¢, &) = c3(log(1/
LVPNY2 02 where  L=min(e? + (Cn) "' (k/2 — 1), 1),
which in turn  yields SUDgs Plen. k) < Pi(en, 1) = ¢
(log(1/e.))/? /s, for some ¢ > O and arate &, = (n~! fogm)!/2
when C/max{J(fp). 1) ~ 8‘2 ~1 ~ 1/logn. By Corollary 1,
we conclude that e(f 20w Togn) except for a set of
probability tending to 0, and Ee(f %) = O~ 'logn). This re-
sult holds generally for any ¥ satisfying Assumption D.

This might be a somewhat surprising result, because the fast
rate n~ ' logn is nearly optimal, which is attainable by many
classifiers only for linearly separable classification. Neverthe-
less, this rate has been attained by y-learning for nonlinear
separable and nonseparable classification. As suggested by the-
orems 4.5 and 4.6 of Bartlett and Shawe-Taylor (1999), a rate
faster than n™ /% is not generally expected for SVMs in nonsep-
arable cases. A recent resuit of Lin (2000) also suggests this,
although the lower bound of the error rate for $VM:s is not yet
available. As discussed previously, the GE of an SVM is deter-
mined by the estimation precision of £, which is a nonparamet-
ric rate for nonlinear learning,

4. IMPLEMENTATION

As discussed in Section 3, use of ¢ may gain improved gen-
eralization ability, although the optimization involved in (4) or
(5} becomes nonconvex. Fortunately, recent developments in
deterministic global optimization techniques via concave pro-
gramming have made it possible to tackle the optimization
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problem. The basic idea is to decompose (4) into a sum of a
convex and concave functions. Then a sequence of outer ap-
proximations is constructed, for which a sequence of solutions,
obtained via vertex enumeration of certain polytopes, converges
to the global minimizer. Currently, we are developing global op-
timization routines based on the methods of An and Tao (1997)
and Blanguero and Carrizosa (2000), and will report the results
elsewhere.

In this article we pursuit a different strategy. The optimiza-
tion in (4) and (5) involves unconstrained optimization, where
the cost functions are piecewise quadratic in w and in o. For
optimization of this type, a direct-search complex algorithm
[available in (IMSL)] together with a good initial guess is ap-
plicable (see Gill, Murray, and Wright 1981 for the algorithm).
The initial guess may be chosen as an estimate obtained from
either an SVM or a stochastic search, such as a genetic algo-
rithm. To prevent the algorithm from being trapped with a local
optimizer, we recommend using multiple starting values.

Our limited experience suggests that this routine performs
well for a low-dimensional problem, although it can not guar-
antee to obtain the global minimizer. In fact, no conventional
deterministic optimization routines, using an initial guess, can
guarantee to converge to the global optimizer, for a nonconvex
objective function. Note that our theory extends to an g,,-global
minimizer of (4) whose objective function value is no greater
than that of the global minimizer plus £,. This suggests that it
is unnecessary to obtain the exact global minimizer as long as a
reasonably good local minimizer can be found.

To apply a direct-search complex algorithm, we need to deal
with b, because the choice of b that gives the minimal of (4)
or (5) may be nonunigue. For instance, in separable cases, any
b € (bpin, bmax) 1S a minimizer of (4) if by, is the minimum of
w-x for A, and byay is the maximum of w - x for A_, although
b = (bmin + bmax)}/2 gives the optimal hyperplane when there
is no a priori probability regarding .A4. This difficulty yields
estimation bias as well as a problem of convergence in opti-
mization. To overcome the difficulty, we first identify the set of
all minimizers b of the EGE given w or «, then compute the
center of these minimizers. We give an efficient algorithm for
performing this task.

To ensure fast function evaluation, we have developed an al-
gorithm to express b as a function of w or ¢, as discussed in Sec-
tion 2.1. For simplicity, we present only the algorithm for (4),
which proceeds in three steps.

Algorithm:

Step 1: Initialization. Sort pairs {(# = wx;, y)}7_; by # in an
ascending order and let {(7, yi)}7_, denote the sorted pairs.
Step 2: Counting and updating. Find & to minimize g(b) =
Yo ¥ (if(x:)) via dynamic programming, which is per-
formed in three steps:

a. Compuie A; using a recursive formula: A; =A;—{ +¥;;

i=2,....,n, Al = #{y;, = —1,i = 1,...,n}, Iy = —o0,
En-H =

b. Find the minimizer(s) of {A1,...,A,} and let B={B; <
By < --- < By} denote the collection of the distinct mini-
mizer(s).
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c. Compute
— (1B, + 1B +1)/2 if m is even
* M(EB(m-H)/Z_l +;B(m+l)/2)/2 if mis odd
_(;11'1'6) ifm=1,Bi=n+1
—(t1 —€) ifm=1,B1=1,

where € is a small number, say the machine precision.

Step 3: Optimal b. Set b= b*, it ;(5 +6*) = 1;i=1,...,n,
among all correctly specified instances such that y;( % -+5%) > 0.
Otherwise, compute the minimizer »b** of g(b) using b* as an
initial value via a safeguarded quadratic interpolation algorithm
for one-dimensional optimization. Then set b = b™*.

The computation complexity for this algorithm is O(r) in
step 2 and O(n?) in step 3. In most cases, step 2 suffices, yield-
ing O(n) computation. In step 3 the one-dimensional optimiza-
tion is relatively easy, because g(b) is piecewise linear in b.
Overall, computational speed is not a concern; slow conver-
gence of the optimization algorithm is offset by fast function
evaluation.

5. NUMERICAL EXAMPLE
5.1 Simulation

We now examine the effectiveness of ¢ -learning via sim-
ulation. We consider two-dimensional linear classification,
in which f(x) = Ziz=1 wix; + b. A random training sample
{Xi1, Xi2, Vi), is generated as follows. First, {(Xj1, Xp2)}i_,
are sampled from the uniform distribution over the unit disk
{(x1,x2) : x3 +x2 < 1}, and ¥; is assigned to 1 if X1 > 0 and
—1 otherwise. Then random selected labels {Y;}}_; are flipped,
which generates a random sample for nonseparable cases.

Simulations are conducted via IMSL optimization routines
(seethe IMSL. manual for a description of optimization routines
in the IMSL Math Library). Five different levels of contami-
nation are considered: 0-flip, 1-flip, 2-flip, and 10%-flip, each
with three different values, C = 10, 10°, 107. For each simula-
tion, the values of e(f, f*) for SVM and r-learning are com-
puted, as reported in Table 1. To assure computation accuracy,
our IMSL version of SVM is cross-examined by a popular ver-
sion of SVM software SVMTorch (see Collobert and Bengio
2001).

An expression of e(f,f*) is obtained for fast evaluation,
where e(f,f™), after adjusted for the ideal performance, be-
comes a basis for comparison. Direct calculations yield that
Err(f) = k/n + (1 — 2k/m)A, Err(f*) = k/n, and e(f,f*) =
(1 — 2k/n)A, where k is the number of flips; wA, given here,
is the area between the vertical line and a decision line within
the unit circle:

(3161 + 7 /2] + 3162 — 7 /2] + b/ 2w, ]
x (|cos(B)| — | cos(62)]) /7,
(7r/2 — (62 — 61 —sin(62 — 01))) /.,

Here 6; = W — cos ™1 (1b]/ (w3 + w3)/2), 6, = W + cos ™ (|b]/
w2 +wh)1/?), and ¥ = cos™!(jwi]/ (W + w3)/2). It can be
verified that the bracketing functions of F alse satisfy the fore-
going inequality. This implies that Err(f*) is 1/n for 1-flip, 2/r
for 2-flip, and .1 for 10%-flip.

A= wy #0

wy = 0.
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Evidently, ¢r-learning outperforms SVM in terms of general-
ization error in all the nonseparable and separable cases, except
that they yield the identical results for large C in all the separa-
ble cases (0-flip). The result for the separable cases agrees with
our theoretical result in Proposition 2. For the nonseparable
cases, the improvements of v/-learning over SVM increase with
n and become rather significantly for large n and C, with the
largest improvement of 425% (4.25 = .017/.0040), in the case
of 10%-flip with n = 400 and C = 107. Overall, the amount of
improvement is substantial. As C increases, the performances
of y-learning and SVM usually do not deteriorate.

From Table 1, we see that even in the separable case (i.e.,
0-flip), y-learning has the advantage of its performance being
less sensitive to the choice of C. This is important when the
methodology is applied to the nonlinear case when the choice
of C is critical. In the nonseparable case (i.e., when the class la-
bels are contaminated by noise), yr-learning has smaller GE for
all C = 10!, 10, 107. Furthermore, the degree of improvement
over SVM becomes more dramatic as the samiple size increases.
Thus -learning has more robust performance both with re-
spect to the choice of C and with respect to noisy data.

The simulations also indicate the large-sample performance
of ¢r-learning and SVM in terms of the sample size n. As sug-
gested by the slopes of the least squares lines in Figure 2, the

Table 1. Average e( f, ) and the Standard Deviation (in parentheses)
for SVM and i -Learning Over 100 Simulation Runs

c 0-flip

n=25

107 SVM .0521(.0297)
YL .0464(.0293)

103 SVM .0356(.0229)
WL .0356(.0229)

107 SVM .0358(.0228)
WL .0858(.0228)

n=>50

10" SVM .0327(.0180)
WL .0279(.0171)

.0181(.0121)

WL .0179(.0122)

.0181(.0123)

WL .0181(.0123)

1-flip 2-flip 10%-flip

.0586(.0336)
.0496(.0344)
.0534(.0359)
.0417(.0339)
.0537(.0370)
.0444(.0378)

.0598(.0350)
.0569(.0403)
.0584(.0319)
.0522(.0461)
.0582(.0322)
.0520(.0453)

.0598(.0350)
.0569(.0403)
.0584(.0319)
.0522(.0461)
.0582(.0322)
.0520(.0453)

.0340(.0174)
.0285(.0186)
.0317(.0176)
0193(.0161)
.0318(.0177)
.0188(.0142)

.0394(.0187)
.0298(.0188)
.0353(.0196)
.0239(.0206)
.0353(.0196)
.0223(.0165)

.0472(.0258)
.0314(.0219)
.0457(.0263)
.0320(.0271)
.0457(.0263)
.0321(.0260)

e —

.0181(.0091)
L .0132(.0090)
.0108(.0073)
WL .0105(.0077)
.0103(.0078)
WL .0103(.0078)

.0195(.0102)
.0130(.0084)
.0163(.0097)
.0105(.0074)
.0159(.0100)
.0104(.0078)

.0216(.0110)
.0141(.0093)
.0201(.0099)
.0109(.0079)
.0201(.0099)
.0111(.0091)

.0344(.0171)
.0159(.0144)
.0338(.0169)
.0148(.0139)
.0337(.0169)
.0154(.0129)

.0133(.0071)
YL .0091(,0074)
.0067(.0043)
YL .0064(.0046)
.0052(.0043)
WL .0052(.0043)

.0138(.0079)
.0090(.0073)
.0109(.0061)
.0064(.0046)
.0108(.0066)
.0056(.0051)

.0143(.0085)
.0095(.0077)
.0132(.0073)
.0066(.0047)
.0132(.0071)
.0060(.0062)

10227(.0120)
10107(.0094)
.0228(.0120)
.0079(.0063)
.0228(.0120)
.0078(.0087)

.0087(.0045)
L .0053(.0038)
.0038(.0021)
VL .0033(.0023)
.0027(.0021)
WL .0027(.0021)

.0087(.0048)
.0049(.0036)
.0063(.0036)
.0033(.0024)
.0061(.0037)
.0027(.0021)

.0092(.0050)
.0049(.0037)
.0079(.0042)
.0035(.0028)
.0078(.0041)
.0027(.0021)

.0172(.0094)
.0053(.0041)
.0170(.0094)
.0039(.0027)
.0170(.0094)
.0040(.0039)

NOTE: In computation, the percent of flips is rounded down to the number of flips.
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error rate of y-learning is of order n~! in all of the cases. In
contrast, the error rate of SVM is somewhere between n~ /2
and n /4 for the nonseparable cases. This finding suggests that
learning accuracy deteriorates greatly when generalizing from
separable to nonseparable cases, which agrees with our theoret-
ical analysis in Section 3 and the discussion in Section 2.

Finally, we scrutinize how SVM and ¢ -learning perform on
one randomly selected training sample of size 25. As illustrated
in Figure 3, the decision function of SVM gives three training
errors and the decision function of i -learning give, two training
errors. To see why this occurs, note that SVM needs to compen-
sate for the left- and right-contaminated instances far from the
decision line by reducing the value of the second term of (1).
Because of this, SVM must sacrifice learning accuracy.

In summary, -learning has delivered the optimal perfor-
mance in linear classification and substantially outperforms
SVM. The simulations also confirm that yr-learning has better
generalization ability than SVM when the size of training sam-
ple is reasonably large, except in separable cases, where they
have essentiaily the same performance.

5.2 Application 1o Breast Cancer Classification

The Wisconsin Breast Cancer database (WBCD), collected at
University of Wisconsin Hospitals, concerns visually assessed
nuclear featares of fine-needle aspirates taken from patients’
breasts. Bach sample was assigned to a nine-dimensional vec-
tor of diagnostic characteristics, with each component being in
the interval 1-10, with 1 corresponding to a normal state and
10 corresponding to a most abnormal state. The goal is to de-
termine whether a sample is benign or malignant, as found on
biopsy and examination. The data were described in detail by
Wolberg and Mangasarian (1990).

1.0

0.5

wa
0.0
!

-1.0

] T T T T
-1.0 0.5 0.0 0.5 1.0

W1

Figure 3. Piot of the Decision Functions of ¥ -Learning and SVM, as
Well as the True Decision Functions, Represented by the Orange (solid),
Green (dashed), and Vertical (doited) Lines, Respectively. The circled
and crossed points are posilive and negative instances. The training
sample size is 25.

731

Table 2. Error Rates (in percentages) for WBCD

SvM Wl Improvement (%)
Case Testing Training Testing Training Testing
1 3.23% 2.35% 2.64% 1.47% 18.18%
2 2.84%  2.35% 2.64% 1.17% 0%
3 2.64% 2.35% 2.35% 1.17% 11.11%
4 2.05%  3.23% 1.76% 1.76% 14.29%
5 3.52% 1.47%  3.23% 1.17% 8.33%
6 1.76%  3.52% 147%  2.05% 16.67%
7 2.05%  2.64% 1.76% 1.47% 14.29%
8 1.76%  2.05% 1.17%  2.64% 33.33%
9 2.64% 2.93% 2.05% 1.76% 22.22%
10 2.35%  2.64% 1.76%  2.35% 25.00%

NOTE: For each case, a randomly selected subset of size 341 from a total of 682 samples is
used to train, while the remaining samples are tested.

The WBCD has been used as a benchmark learning ex-
ample, with a training error of 2.3% for linear machines
when the 682 samples are used. (The details can be found
at fip:/fftp.cs.wisc.edu/math-prog/cpo-dataset/machine-learn/
cancerl/.) Here we apply v -learning to WBCD and compare
its performance with SVM in the setting where f(x) =w-x+b,
where w and x = (x1, ..., xg) are nine-dimensional vectors and
y = =1 indicate benign and malignancy.

To examine generalization ability, we randomly divide the
682 samples into two halves for testing and training. We then
apply v-learning and SVM to the same randomly selected
training and testing sets. Because the tuning parameter C may
affect the performance of SVM and v -learning, we seek the
best performance of i -learning and SVM with respect to a
set of discretized C values in an interval [1073,103]. The
smallest testing errors and the corresponding training errors for
SVM and y-learning based on 10 random selected partitions
of WBCD are reported in Table 2. As suggested in the table,
in terms of testing, v-learning outperforms SVM in 9 out 10
cases, all except for 1 case in which ¥ -learning and SVM give
the same performance. The percent improvement of vr-learning
over SVM range from 0 to 33.3%, which is not small in view of
the high accuracy of SVM. For this application, the best perfor-
mance of SVM is usually realized for a narrow range of small
values of C, whereas that of v-learning is typically achieved
for a much wider range of larger values of C.

6. DISCUSSION

This article has proposed a machine learning methodology,
called v-learning, that is applicable to any problem of learning
to classify data from examples. The theoretical and numerical
analyses in this article show that yr-learning has good general-
ization properties and can outperform popular SVMs. Although
the computational complexity of ¥ -learning is substantially
higher than that of SVMs, we believe that the significant theo-
retical advantages, as suggested by the results presented herein,
will make it worthwhile to aggressively pursue further compu-
tational developments of the y-learning methodology. Further
developments of the theory are necessary to better understand
how the performance of vr-learning is related to the choice of
G(F). We hope that this article will serve to stimulate interest
in these directions.
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APPENDIX: PROOFS

Proof of Proposition 1. First, we prove that f minimizes E(1 —
Sign(Yf(X))). To this end, we note that E((1 — Sign(Yf(X))| X =x) =
(1 — Sign(fXNPX) + (1 — Sign(—fX))(1 — PX)) =1 — 2f* (%)
Sign(f), where P(x) = P(Y = 1|x). Consequently, E(1 — Sign(¥f(X)))
is minimized when f = f. Of course, the minimizer is not unique as f*
is also a minimizer. Furthermore, because ¥ (x) > (1 — Sign(x)) and
Y (ySign(f(x))) =1 — ySign(f(x)). The result then follows.

Proof of Proposition 2. We prove only the linear case. For large C,

?’21 ¥ (yif (x7)) = Ois attained, implying that y;f (x;) > L;i=1,...,n.

This yields the desired result.
Lemma A.1. If two classes are separable, then Err(f*) = 0.

Proof. We now prove a slightly stronger result. Let f;; i = 1,2, be
the conditional probability densities for A4. By (8), Err(f*) can be
written as

/ T1f1(x)
(efy o< fma} TU1 ) + mofa (%)

n / of2(x)
{ef (= ) T X)) + 12f ()

By the definition of separability, f1(x)f>(x) = 0 for any x € S, which
implies the desired result.

Before proving Theorem 1, we need to define the Ly-metric en-
tropy with bracketing for a function class F. For any & > 0, call

(i, o, lin, 1} an e-bracketing function if for any f € 7 there is a

j such that lJl <I(f, ) < I and max(1 <j<m I1lf - z]l.uz <e, where | - |l
is the usual Ly-norm, defined as |fl||% = 2dP. Then the L, metric en-
tropy of JF with bracketing Hp(g, F) is defined as a logarithm of the
cardinality of the e-bracketing of the smallest size.

Proof of Theorem 1. Before proceeding, we introduce some nota-
tion to be used later. Let 7¢, (f. Z) = Ly (f, Z;) + MJ(f) be the cost func-
tion to be minimized, as in (4), where Ly, (f, Z;) = ¢ (Y;f (X;)) and A =
1/(Cn). Let ?(f \Zy) = I{f, Z;) + AJ(f) be the corresponding cost furnc-
tion defined by Sign(-), as in (2), where I(f, Z;) = (1 — Sign(Y;f (X;))).
Define the scaled empirical process, En(Z(f VAR ?w (fo, 2)). as

n U3 (U 2 — Ty (o, i) — B, Z3) = Ty (fo. 200))
i=1
=Ea(I(f. Z) — Iy (fo, )
where Z = (X, Y). Let

Arj={feF 2716 <e(f,f) <252, 2 T max(U(fy), 1)

<J(f) < ¥ max(J(fp), D},
and let
Ao=feF 27182 <e(f.]) <2185, J(f) < max(J(fo), D}

for j=1,2,...,and i = 1,2, .... Without loss of generality, we as-
sume that J(fp) > 1 in the sequel. Because e(f J) < 1/2 for any f, we
assume, without loss of generality, that max(e%, 2sy) < 1.

The treatment used here is essentially the same as that of Wong
and Shen (1995) and Shen (1998). Our approach for bounding
P(e(f ) = 8,%) is to reduce the problem of bounding a sequence of
empirical processes that are induced by the cost function 1. Specifi-
cally, we apply theorem 3 of Shen and Wong (1994), a large deviation
inequality for empirical processes, to bound P(A;7); i,j=1,...,n by
controlling the mean and variance, defined by I(f, Z;) and penalty A.
This yields an inequality for the sequence of empirical processes and
thus for e(f, f).
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First, we establish the connection between e(jAr ,/) and the empirical
processes. By Assumption D,

Ty (fo. 20 — IF. Z) 2 Ty (fo. Z)) — Ly (£, Z)),  i=1,....,n. (AD)

It follows from the fact that f is the maximizer of —n " ?:171ﬁ
(f.Z)), e(fo. f) < ey (fo.f) < 82, and (A.1) that

sup

le.)) =82} c { ]
(feFed Hze2)

n 1Y Uy (fo. Z0) — Iy Zi»zo}

i=1

sup

n
- { Y (o, Z) -1 Zi))?_o}-
{feFue(f =83}

i=1

P(e(f‘f)zs,%)SP*( sip o'
[feFe(f H=83)

< Y (ly (o, Z) = IF. Z)) > o) =1,
i=1

where P* denotes the outer probability measure.
To bound I, it suffices to bound the corresponding probability

over Ay, for each i,j = 1,.... To this end, we need some inequali-
ties regarding the first and second moments of W, z) — jlﬁ (fo. Z) for
feA;.

For the first moment, note that E((f,Z) — lLy(fo.2))

=E(({f,Z) - Iy F.2)) — Ely (fo. 2)) — Iy (f.2)), which is equal to
2e(f, ) — ey (fo.])), because Ely (f, Z) = EI(f, Z) (Prop. 1). By As-
sumption A, 2ey (fp, H<2s, < 5,%. Then, using the assumption that
max(J(fy), DA < 8;17‘/2, we have, for any integers 7,j > 1,
inf E(I(f, 2) ~ Iy (fo, D)) = MG,y = @718+~ = DIf)
ij

(A.2)
and

inf E(I(f. 2) =Ty (o, 2) = 271 = 1/2)8] = MG, 0) =22,
0

(A.3)
where the fact that 2! — 1> 2= 1 has been used.
For the second moment, it follows from (6) and Assumption B that
forany f € F,

e(f.J) = EIf* (X)1|Sign(¥f (0)) — Sign(¥f (0)|
> SE|Sign(Yf (X)) — Sign(¥f CO)I(f* ()| = 8)
> 5(E| Sign(YF(X)) — Sign(Xf(0)| - 2¢18%)
> 271 (d4e1) ™V (E| Sign(XF (X)) — Sign(¥FOO)) @D,

with a choice of § = (E| Sign(YF(X)) — Sign(Yf(X))|/4c1)}/*. Now
we establish a connectiorl between the first elnd second moments.
By Proposition 1, E(¢ (Y (X)) — (1 — Sign(Yf(X))) = 0. Note that
Y (x) = (1 — Sign(x)) for any x, E|¢ (¥fy(X)) — (1 — Sign(Yfo(X)] =
E@r (Yfo(X)) — (1 — Sign(¥fo(X))) < ey (fo.f). Therefore, by the tri-
angular inequality,
EQ(f, Z) — Iy (fo. 2))? < UE|(1 — Sign(¥f(X))) — ¥ (¥fp(X))|
< U(E| Sign(Yf(X)) — Sign(¥f(X))|
+ E| Sign(Yf (X)) — Sign(¥fo(X))|

+ ey (fo. ).
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For any f € 4;;, .e(f,f'}ot—i*1 > (2_162);[? > 2”18721 > ew(fo,f) and
e(f.f) = e(fo. f), implying that

/ - V2
E(f, Z) - 1y (o, 2))
< UV e, HFT +efo, HHFF) + ey (fo. )

< estelf. /DA,

where 3 =21/ U max (4(292¢)V@+D 1.2y 8max(U, 2)). Conse-
quently,

sup E(ly (fo. 2) — If, D)) < v, J) = e3M @, )7+ ;

Aj

We are now ready to bound f. Using the assumption that
max(J{(fp), i < 82/2, (A.2), and (A.3), we have

5o p( , -
1< S P {sepEally (o.2) — 1. 2)) = MG j) )
;o Mg /
i
e f .
+ 2P (R Enly (o V) = 1f. ) 2 MG 0)

=i+,

Next we proceed to bound [; separately. For /7, we verify the re-
quired conditions (4.5)-(4.7) in theorem 3 of Shen and Wong (1994).
To compute the metric entropy in that (4.7), we now define a bracket-
ing function for iy (fy, Z) ~ {(f, Z}. Denote an &-bracketing set for {Gy :
Gy==ixe 8 :fx} >0}f €A} obe {(Gl,G”l’), s (an, 40} Let
six) be —1 if x € G¥ and 1 otherwise, and s¥(x) be —1 if x € G}
and 1 otherwise; j =1, ..., m. Then, {(sll, sbf), e, (sfn, sp)} forms an
e-bracketing function of — Sign(f) for f € A; ;. This implies that for
any & > M(i,j) and f € A;j, there exists a j (1 <j < m) such that
lf(@ sUf. 5~ Iy (fo. 2 < E(2) forany z = (y, x), where

B =1+ (@0 +2)/2 = 501 = 3)/2) = Iy (fo. 2).
H@ = 1+ 5@ +)/2 = 4@ 0 =»)/2) = Iy (fo. 2),

and (B — 1]4}2;1/2 = (E(s} () — sjl.(x))z)l/2 < 2Y21/2 Hence
EE - 552 < min((2e)V/2,21/2). Consequently Hg (s, F(¥)) <
J 1 ,
H(e?/2.G(¥)) for any & > 0 and j =0, ..., where F(?) = {I(f,2)
- i, o f € F I < ¥} Using the fact that
f;};{’jﬁ HY2(2 /2, G())du/ M, j) is nonincreasing in i and M(i, j);
i=1,..., wehave

OV I .
[ w2020, 6@ amai,
JaM(i.j)

ﬂc;’/zl‘/i(l,j}"‘/z(‘“”

g
aM{1,j

where a = ¢/32. Then Assumption C implies (4.7) with a choice of
&= 1/2 and ¢;; { = 3,4. Finally, it is easy to see that (4.5)-(4.6)
are satisfied with & = 1/2 with the choice of M(i, /), v(i,j), and T =
max{U, 2). More specificaily, M (i, /) /v2(, /) < 1/8max(U, 2) implies
(4.6}, and (4.7) impHes (4.5).

Note that 0 < 8, < 1 and A max{(J{fy), 1) < 8%/2, An application of
theorem 3 of Shen and Wong (1994) with M = nl2M (i, j), v =12, ),
&=1/2, and T = max(U, 2) vields that

oo 00 , . N2
ey {1 —gymM(.j)
7 YEYE
b= ) e ~5ua, +M<z:j>T/3>)

j=1 i=1

HY2 022, 6@/ M1, j) < b (en, 7).
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3exp{—csnM(i, j)%)

o
¥

S
iL
T

3exp(—csn[2 182+ (@1 - 1)AJ(fO)]%)

L
¥

S

It
—_

Il
~

3exp(—csn[(2i‘1a,%)% + (@ = Dy )

1o
o

S~
N
T

< 3exp(—csn(I () 651) /(1 — exp(—csn(uI (o)) i) .

Here and in the sequel, ¢5 is a positive generic constant. Similarly, 5
can be bounded.
Finally,

I < 6exp(—csn(I () 1 ) /[(1 — exp(—esn(uI () 5T ) 2.

o2
This implies that 11/2 < (5/2 4+ 1'/2) exp(—csn(AJ (fg)) @+1 ). The re-
sult then follows from the fact 7 <7 172 <1.

Proof of Corollary 1. The result then follows from the exponential
inequality established in Theorem 1.

Lemma A.2: Metric Entropy of Example 3.2.2. Under the assump-
tion in the nonlinear classification example in Section 3.2.2, we have

H(e, G(F)) = Olog(1/¢)).

Proof. First, we define a set of bracketing functions. Let W =
{0, ntopl 1}, where n = [2p/¢] and [x] is the integer part

of x. Let K(G, p*) be {v:v= L [l @), (i, ) N [T, i) = @, i £ j},

2
where @ denotes the empty set.

Define A(G,p*) = {u: w = U [hiyui), i w) O ) = @,
i # j}. Clearly, for any u € A(G, p*), there exists v € K(G, p*) such
that d{u,v) < 226—!3p* < g. This is because for any given [;, u; there

exists 7, #; € W such that max(|l; — 5|, |u; — %) < %.
Note that § C Uf)*:l K(G, p*). Then it suffices to bound the ca-
pacity {K(G, p*)|, which is upper bounded by Cgp* < n?" . Hence

Zi*:l K(G.p*y < Zﬁ*zl w20 < pr2P = p(2p/e)?P . The desired re-
sult then follows.

[Received November 2001. Revised April 2003.]
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