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Summary. In this article, we propose a method for clustering that produces tight and stable clusters
without forcing all points into clusters. The methodology is general but was initially motivated from cluster
analysis of microarray experiments. Most current algorithms aim to assign all genes into clusters. For
many biological studies, however, we are mainly interested in identifying the most informative, tight, and
stable clusters of sizes, say, 20–60 genes for further investigation. We want to avoid the contamination of
tightly regulated expression patterns of biologically relevant genes due to other genes whose expressions are
only loosely compatible with these patterns. “Tight clustering” has been developed specifically to address
this problem. It applies K-means clustering as an intermediate clustering engine. Early truncation of a
hierarchical clustering tree is used to overcome the local minimum problem in K-means clustering. The
tightest and most stable clusters are identified in a sequential manner through an analysis of the tendency
of genes to be grouped together under repeated resampling. We validated this method in a simulated example
and applied it to analyze a set of expression profiles in the study of embryonic stem cells.
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1. Introduction
Cluster analysis, an unsupervised learning method, is widely
used to study the structure of the data when no specific re-
sponse variable is specified. Our task is to learn the structure
of a d-dimensional distribution based on training data of n
observations from this distribution. The training data are rep-
resented by an n × d matrix. Given a measure of distance or
dissimilarity between any pair of points, the goal is to divide
these n points into a number of clusters. Many methods for
clustering are now available. These methods roughly fall into
two categories, namely heuristic algorithms and model-based
analyses. In heuristic algorithms, no probabilistic model is
specified. Instead, clustering is obtained either by optimizing
a certain target function or iteratively agglomerating (or di-
viding) nodes to form bottom-up (top-down) trees. Examples
of these approaches include K-means clustering and hierar-
chical clustering. Discussion of many popular methods can
be found in Chapter 14 of Hastie, Tibshirani, and Friedman
(2001). Another type of popular heuristic approach is to first
search for small tight clusters (so-called kernels) and then ex-
pand these kernels into a full clustering. An example is the
CLICK algorithm by Sharan and Shamir (2000).

In contrast to heuristic methods, model-based clustering
methods make inferences based on a probabilistic assump-
tion of the data distribution. Fraley and Raftery (1998) built
a Gaussian mixture model for clustering and the EM al-
gorithm was used to maximize the resulting classification
likelihood. Then the Bayesian information criterion (BIC)
(Schwarz, 1978) is used to select complexity of cluster struc-
ture and the number of clusters k; for more references, see
also Day (1969), McLachlan and Basford (1988), Yeung et al.
(2001), and McLachlan, Peel, and Bean (2003). Another ap-
proach of model-based clustering relies on prior specifica-
tions of unknown parameters and Bayesian procedures for
selecting cluster structure and k, normally via Markov chain
Monte Carlo simulation for determining the posterior distri-
bution (see Medvedovic and Sivaganesan, 2002; Liu et al.,
2003).

In cluster analyses of microarray experiments, we start with
a data matrix {θij}n×d, an n × d matrix representing the ex-
pression levels of n genes in d samples. If the goal is to obtain
sets of genes with similar expression patterns that are likely to
belong to similar functional pathways, we will cluster n points
in d-dimensional space under a given distance (dissimilarity)
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measure. To find groups of samples with similar expression
patterns, we cluster samples instead of genes, resulting in d
points in the n-dimensional space being clustered. This is use-
ful, for example, in the discovery of subtypes of a disease.
Microarray experiments normally have 500–3000 genes after
filtering out genes with low information content and 10–500
samples, depending on the study.

Most clustering algorithms assign all points into clusters.
However, in microarray experiments, we expect many genes
to be unrelated to the biological processes that we are inves-
tigating and to show uncorrelated variations with any cluster
of genes. These genes should not be assigned into any specific
cluster, and are thus called “scattered genes.” When analyzing
data with scattered genes, if the algorithm is forced to divide
all points into clusters, both the estimation of the number
of clusters will be problematic and the resulting clusters will
be distorted and difficult to interpret. In a model-based ap-
proach, Fraley and Raftery (1998) modeled outliers by adding
a Poisson process component in the mixture model for clus-
tering. However, it has not been found generally successful
in clustering genes as the method heavily relies on the cor-
rect model specification, estimation of k, and a good initial
value for EM algorithm. To our knowledge, current popular
methods are rarely shown to adequately deal with scattered
genes.

Another important issue in cluster analysis is the estima-
tion of the number of clusters, k. Among the many published
rules in the literature for estimating k, none have enjoyed su-
perior performance over the others in general. Usually, some
rules work better than the others only in some special simu-
lated examples. Milligan and Cooper (1985) performed a com-
prehensive comparison of over 30 published rules and identi-
fied several as better rules. Very recently, Tibshirani et al.
(2001) introduced a promising method that utilized resam-
pling techniques. They selected k to maximize the prediction
rate estimated by resampling (see also Dudoit and Fridlyand,
2002). In this article, we have further developed the resam-
pling approach to identify tight and stable clusters. In our
approach, the tight clusters are obtained sequentially, usually
in the order of decreasing stability, and the choice of k then
becomes secondary. This approach is especially appropriate
in the presence of scattered points.

This article is organized as follows. In Section 2.1, we dis-
cuss several challenging issues in the use of cluster analysis
on microarray data and discuss why current methods are
inadequate for these tasks. In Section 2.2, we illustrate the
difficulties associated with the initial values and local mini-
mum problem of K-means algorithm. A new method to ob-
tain initial values for K-means algorithm is then proposed
to overcome this difficulty. In Section 2.3, a resampling pro-
cedure is used to select tight cluster candidates where the
exact number of clusters, k, becomes less crucial. A recur-
sive procedure is then applied to produce tight and stable
clusters. In Section 3, we present results from a simulation
study to illustrate the improvement offered by this approach.
We also illustrate the method on a set of expression pro-
files produced in the study of mouse embryonic development.
Finally, we provide conclusions and further discussions in
Section 4.

2. Methods
We present our discussion in the framework of microarray ex-
periments, but conceptually this is a general algorithm that
can be used to sequentially identify tight clusters in any unsu-
pervised learning situation. For simplicity, we use K-means as
the partition engine in the algorithm and assume that the data
are in Euclidean space with the usual Euclidean distance as
the dissimilarity measure for clustering. As will be discussed
in Section 4, K-means can be replaced by other clustering
algorithms if needed.

2.1 Motivation
Microarray experiments allow simultaneous monitoring of
thousands of genes’ activities (Brown and Botstein, 1999).
In contrast to the traditional hypothesis-driven experiments
in biological science, this is a data-driven approach to gen-
erate biological hypotheses and models, and to guide fur-
ther experiments. Many popular clustering algorithms have
been used to explore microarray data including hierarchical
clustering, K-means, K-memoids or partition around medoids
(PAM), and self-organizing map. They usually require the
estimation of the number of clusters, k, and then the algo-
rithm assigns all data points into one of the k clusters. Almost
all of these algorithms have to assign all genes into clusters.
As a result, many genes unrelated to the underlying biolog-
ical pathway are falsely classified to the tight clusters of in-
terest. These genes may corrupt and dilute the information
contained in these clusters. An example of this situation is
shown in Figure 1. The microarray data of Drosophila life cycle
(Arbeitman et al., 2002) are clustered by K-means algorithm
with k = 10, 15, and 30, and the result is shown as a heat map.
A heat map is a useful tool to visualize the clustering result
in a high-dimensional dataset. Instead of presenting the raw

Figure 1. Clustering using K-means algorithm with arbi-
trary k.
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data in numbers, it demonstrates the data matrix by gradient
colors.

It is usually infeasible to estimate the number of clus-
ters, k, in microarray experiments except for some rare sit-
uations such as cell cycle experiments in Cho et al. (1998)
and Spellman et al. (1998). At a first glance at Figure 1, all
three clustering results seem to show clear and informative
cluster patterns no matter which k we use. However, a closer
look at even the most homogeneous clusters (those obtained
with k = 30) shows loose and contaminated patterns due to
the assignment of scattered genes into clusters. Research in
cognitive science has shown that human visualization has a
tendency to overfit, that is, to suppress the noises and ac-
centuate the pattern (Gilovich, Vallone, and Tversky, 1985).
Because microarray analysis is often used as an exploratory
tool to guide further investigations and these biological ex-
periments are usually costly, the inclusion of false-positive
genes is highly undesirable. Moreover, as we will discuss in
Section 2.2, scattered genes often hamper the ability of a clus-
tering algorithm to find a good cost-function minimum in the
space of partitions. Thus, there is need for a clustering algo-
rithm that can directly identify the most informative, tight,
and stable clusters in high-dimensional data.

2.2 Overcoming the Local Minimum Problem
in K-Means Clustering

Because K-means clustering will be used as an intermedi-
ate engine in the tight clustering algorithm in Section 2.3,
we will first address an important but often overlooked is-
sue in its implementation, that is, the problem of local min-
ima. The K-means clustering algorithm aims to divide data
points into clusters so that the within-cluster dispersion (sum
of squares) is minimized (MacQueen, 1965; Hartigan and
Wong, 1979). In general, it is not computationally feasible to
search for the global minimum. Instead, the algorithm per-
forms iterative reallocation until the within-cluster disper-
sion stabilizes. Different initial values for the algorithm may
result in different clustering results. Often, with a poor ini-
tial value, the minimization falls in a local minimum quickly
and gives an undesirable clustering result. This problem is
especially pronounced when scattered points exist. To illus-
trate this problem, a total of 90 points from three clusters (in
black) and scattered points (in gray) are simulated (Figure 2).
Hierarchical clustering with single and complete linkage is
performed. The hierarchical trees are then cut to produce
three clusters. The cluster centers are denoted by “o” for sin-
gle linkage and “x” for complete linkage in the first plot of
Figure 2. These cluster centers are then used as initial val-
ues to perform K-means clustering, respectively. As seen in
the second plot of Figure 2, K-means clustering with single
linkage initial value (cluster centers indicated as “o”) gives an
adequate clustering as hoped (within-cluster sum of squares
305.09) while K-means clustering with complete linkage ini-
tial value (denoted by “x”) falls into a local minimum and re-
sults in a very poor clustering (within-cluster sum of squares
965.32). In other replications, single linkage may also perform
poorly.

Multiple starting initial values and stochastic methods,
such as simulated annealing and genetic algorithms, are of-
ten used to overcome this problem. They, however, multiply
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Figure 2. Cluster centers obtained from hierarchical clus-
tering are shown in the upper plot (o: single and x: complete
linkage) and are used as K-means initial values. The resulting
cluster centers of K-means are shown in the lower plot.

the computation complexity and the global minimum is often
still not obtained. Alternatively, hierarchical clustering can
be used to provide an initial value for K-means clustering as
in the above example. S-Plus adopts this as default when
the initial value is not provided by the user while R uses a
randomly generated initial value. The hierarchical initial val-
ues work well when clusters are well separated. However, as
our example suggests, this initial value can still fall into a lo-
cal minimum when cluster boundaries are vague or scattered
points are present.

Here, we propose an alternative initial value that is effective
in such situations. First, we cut the hierarchical clustering
tree to obtain p × k clusters. Among these p × k clusters,
we choose the k clusters consisting of the largest number of
points, and use their cluster centers as the initial value for
K-means algorithm.

We test this new approach by a simulation. Three normally
distributed clusters centered at (0, 0), (12, 0), and (6, −6)
are generated and then scattered points are added. (See
Section 3.1 for detailed construction of the simulation.) We
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Table 1
Comparing average K-means error rates using different initial values in 100,000 simulations. For the

simulation settings, “50 × 3 + 10” means three clusters each containing 50 points plus 10 scattered points
are generated.

HS1 HC1 HS3 HC3 HS6 HC6
p × k R 1 × 3 1 × 3 3 × 3 3 × 3 6 × 3 6 × 3

50 × 3 + 50 0.0366 0.0868 0.0553 0.0019 0.0001 0.0001 0.0049
50 × 3 + 10 0.0699 0.0451 0.0032 0 0.0072 0.0010 0.0446
100 × 3 + 100 0.0260 0.0536 0.0687 0.0008 0 0 0.0001

simulate 100,000 times. In each replication we cluster the data
into three clusters using K-means with different choices of ini-
tial values: random initial values, initial values from hierar-
chical single linkage (HS1) and complete linkage (HC1), and
early hierarchical tree truncation methods with p = 3 (HS3
and HC3) and p = 6 (HS6 and HC6). To assess errors in each
clustering result, we calculate its R-value, which is defined as
the sum of the square of distances from the computed clus-
ter centers to the underlying true cluster centers. It is clear
that convergence to local minima can be identified by large
R-values. The result in Table 1 shows that simple hierarchical
initial values (HS1 and HC1) do not offer an improvement over
random initial values (R) in this example due to the existence
of scattered points. On the other hand, our early truncation
method significantly decreases the chance of converging to a
local minimum because it effectively avoids including scat-
tered points in the initial value. We also note that choosing p
too large may lead to deterioration in the performance. Un-
less otherwise specified, we will use early truncation of single-
linkage hierarchical tree with p = 3 as the initial value for
K-means algorithm in all subsequent analyses. We note
that this alternative initial value is also useful for other
optimization-based clustering algorithms such as PAM.

2.3 Tight Clustering
The procedures of “tight clustering” are described below.

2.3.1 Algorithm A. This algorithm is used to select can-
didates of tight clusters when k in the K-means algorithm
is prespecified. The subsampling procedure is used to create
variabilities so that a pair of points stably clustered together
can be distinguished from those clustered by chance.

(a) Take a random subsample X ′ from the original data X,
say with 70% of the original sample size. Apply K-means
with the prespecified k on X ′ to obtain the cluster centers
C(X ′, k) = (C1, C2, . . . ,Ck ).

(b) Use the clustering result C(X ′, k) as a classifier to clus-
ter the original data X according to the distances from
each point to the cluster centers. Following the conven-
tion of Tibshirani et al. (2001), the resulting clustering is
represented by a comembership matrix D[C(X ′, k), X]
where D[C(X ′, k), X]ij , the element of the matrix in
row i and column j, takes value 1 if points i and j are in
the same cluster and 0 otherwise.

(c) Repeat independent random subsampling B times to ob-
tain subsamples X (1), X (2), . . . ,X (B). The average co-
membership matrix is defined as D̄ = mean(D[C(X (1),
k), X], . . . ,D[C(X (B), k), X]).

(d) Search for a set of points V = {v1, . . . , vm} ⊂ {1, . . . ,n}
such that D̄vivj ≥ 1 − α, ∀i, j where α is a constant close
to 0. Order sets with this property by size to obtain V k1,
V k2, . . . These V sets are candidates of tight clusters.

2.3.2 Sequential identification of tight and stable clusters.
The following algorithm is used to identify a tight cluster
that is stably chosen by consecutive k. After a tight and sta-
ble cluster is identified, it is removed from the whole data and
the same procedure is repeated to identify the next tightest
cluster. We first define a similarity measure of two sets Vi and
Vj to be s(Vi , Vj ) = |Vi ∩ Vj |/|Vi ∪ Vj | where |V | is the size
of set V. Therefore, s(Vi , Vj ) = 1 if and only if sets Vi and Vj

are identical.

(a) Start with a suitable k0. Apply algorithm A on con-
secutive k starting from k0. Choose the top q tight
cluster candidates for each k, namely {V k0,1, . . . ,V k0,q},
{V (k0+1),1, . . . ,V (k0+1),q}, . . . We use q = 7 throughout the
article.

(b) Stop when s(Vk′,l, V (k′+1),m) ≥ β. Here β is a constant
close to 1, k′ ≥ k0, and 1 ≤ l, m ≤ q. Identify V (k′+1),m

as a tight and stable cluster. Remove it from the whole
data.

(c) Decrease k0 by 1 and repeat steps (a) and (b) to identify
the next tight cluster. The cluster selection terminates
when k0 is decreased to five or a user-specified target
number of clusters is achieved.

Remark 1. Note that D̄ij is an estimate of the probability
of point i and j to be clustered together in each subsampling
judgment.

Remark 2. Intuitively, α controls tightness and β controls
stableness of selected clusters.

3. Examples
3.1 Simulated Example with Scattered Points
We simulate 14 two-dimensional normally distributed clus-
ters with covariance matrices Σ = (0.1)2I, (0.2)2I, . . . , (1.4)2I
each containing 50 points, where I is the identity matrix. An-
other 175 noise points are then uniformly added in the space.
In each cluster, each point is generated within two standard
deviations to its cluster center; otherwise, a new point is gen-
erated to replace it. The scattered points (noise samples) are
uniformly distributed in the space that is more than three
standard deviations away from each cluster center. This re-
striction eliminates any confusion of the definition of cluster
points and scattered points.
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Table 2
Tight clustering results on simulated data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Noise

Truth 50 50 50 50 50 50 50 50 50 50 50 50 50 50 175
k0 = 10 58 59 59 78 72 60 489
k0 = 20 59 56 55 53 57 53 53 52 52 52 56 51 51 51 112
k0 = 25 55 56 53 56 53 53 52 55 51 51 51 50 50 50 130
k0 = 40 52 51 51 52 51 51 51 50 26 25 22 50 18 17 278

We perform tight clustering on these simulated data with
parameters α = 0, β = 0.7, B = 10, and k0 = 10, 20, 25, and
40. The number of points in each cluster identified is shown
in Table 2. When k0 = 10 the algorithm has to stop when
six clusters are identified because the algorithm reduces k0 by
1 each time a tight cluster is identified and removed. Both
k0 = 20 and k0 = 25 give all 14 correct tight clusters plus few
surrounding scattered points. This suggests some robustness
property on the selection of k0 in this algorithm. However,
when k0 is too large (k0 = 40) the algorithm splits tight clus-
ters because we assigned the points into too many clusters.
Larger k0 usually results in smaller tight clusters. We suggest
to set k0 roughly within one- to twofold of underlying true
k. In our experience, B = 10 is enough to produce satisfying
clustering and setting stringent parameters such as α = 0,
β = 0.8 helps to produce smaller and tighter clusters but may
miss some loose while interesting clusters.

3.2 An Example from Functional Genomics
We have applied tight clustering to a number of large-scale ge-
nomic datasets. The findings support the notion that smaller
clusters of genes showing tight regulation of expression is bi-
ologically more relevant than larger clusters with loose pat-
terns. In other words, exclusion of scattered genes from being
clustered allows us to obtain the underlying biological implica-
tion of the clusters in a more reliable manner. We present here
just one example that concerns the analysis of the gene expres-
sion profiles of 126 cell samples of a laboratory mouse. About
half of the samples are from different stages of mouse embry-
onic development, and the remaining half is a diverse collec-
tion of samples from various tissues, including several types of
adult stem cells. The samples were profiled using an oligonu-
cleotide array (U74Av2 mouse array from Affymetrix, Santa
Clara, CA) containing probe sets for about 10,000 mouse
genes. We applied tight clustering on these data to obtain
about 30 tight clusters showing a variety of distinct regulation
patterns. The last plot of Figure 3 shows one of these tight
clusters. A majority of the 26 genes in this cluster appeared
to be involved in DNA replication. The expression of these
genes was high mainly in several embryonic stages and in some
adult stem cells, but not in differentiated tissue types. Partic-
ularly striking was the fact that 7 of the 26 probe sets in this
cluster map to mammalian homologs of the mini-chromosome
maintenance (MCM)-deficient genes in budding yeast. It is
known that in mouse the six MCM proteins form a complex
(Kimura et al., 1996) and that the disruption of any of the
MCM genes results in yeast cells being unable to complete the

Figure 3. Selected clusters of tight clustering and K-means
clustering with k = 30, 50, 70, and 100 containing seven MCM
genes. The MCM genes are indicated on the right.
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S phase in the cell cycle. To see whether the tight regu-
lation of the MCM genes is easily detected using standard
K-means clustering, we performed the K-means algorithm
on this dataset several times, each with a different value of
k (k = 30, 50, 70, 100). In each run, we selected the clusters
that contained any of the MCM genes. For k = 30, 50, and
70, all MCM genes fell into one cluster but the cluster sizes
(96, 60, and 77, respectively) were much larger than the one
in tight clustering (the first three parts of Figure 3). For k =
100, the MCM genes were distributed in two different clusters
(sizes 31 and 15), making it harder to detect the coregulation
of the MCM genes.

4. Conclusion and Discussion
Tight clustering contains a novel concept that does not ne-
cessitate the estimation of the number of clusters and the
assignment of all points into clusters. An immediate advan-
tage is that it reduces the chance of including false-positive
genes into the clusters. As a result, it allows us to concen-
trate on the more informative and biologically relevant genes.
Current algorithms are problematic in situations where data
are chaotic and have large numbers of scattered points. The
resulting clusters are usually skewed or misleading due to the
assignment of all points into clusters. Tight clustering allevi-
ates this problem by only focusing on the core patterns and
the result becomes more interpretable. Once the core patterns
are learned, scattered genes with relatively loose correlations
can be added to the cluster if necessary.

A mixture model-based approach has been used in cluster
analysis. Through explicit modeling it provides a firm math-
ematical basis on estimation and statistical inference, and
hence it represents a very attractive alternative to classical
hierarchical or K-means clustering. On the other hand, in ap-
plication to gene clustering based on microarray data, there
can be several thousands of genes and the fitting of these mod-
els can fail to converge to the global optimum. In fact, we find
the algorithm often finds undesirable local minimum even in
the simple simulating setting in Section 3.1. The many strong
assumptions underlying these models, such as Gaussian dis-
tribution, equal variances across clusters, or sphericity of the
dispersion matrices, are also difficult to validate. This is es-
pecially true in large studies when the vector of expression
values of a gene can be of high dimension (e.g., 100). Further-
more, the determination of the number of clusters remains
a difficult issue in practice. The BIC for model selection is
approximate and the convergence to local minimum makes it
even more unstable. For these reasons, current model-based
approaches may not conclude to a satisfying clustering result
in the analysis of microarray data. In this article, we decide to
explore the extension of classical K-means algorithms through
resampling-based assessment and sequential identification of
tight clusters. The careful comparison of these approaches
awaits further investigations.

In this article, K-means clustering is used as an interme-
diate engine for tight clustering. We note that conceptually
K-means can be replaced by any other clustering method in-
cluding a model-based approach provided that the clustering
result in subsamples can be used as a classifier to cluster the
original data (step [b] in Section 2.3.1). For example, we can
replace K-means with K-memoids so that a suitable dissimi-

larity measure other than Euclidean distance can be used for
a specific data structure. An example is when we have infor-
mation on the measurement variability of each sample (vari-
able). In this case, an inverse weighting of these measurement
variabilities in the distance calculation (so-called variability-
weighted similarity) is more proper.

An alternative approach for tight clustering is to identify
and exclude scattered points so that the remaining data form
a tighter clustering. We have tried a similar resampling pro-
cedure in this approach. However, our experience shows that
it is less effective than the method we propose here.

Resampling procedures have been widely used in supervised
learning to improve classification performance (e.g., bagging,
committee algorithm, and random forests in Breiman [2001]),
but have not been widely applied in cluster analysis except for
estimating the number of clusters in Tibshirani et al. (2001).
Further methodological exploration and studies of theoreti-
cal foundation of resampling methods in clustering are worth
pursuing in the future.

A C library and a stand-alone package for implementing
the method and data visualization can be downloaded from
http://www.pitt.edu/∼ctseng/.
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Résumé

Dans ce papier, nous proposons une méthode de classifica-
tion qui produit des classes étroites et stables sans forcer tous
les points au sein des classes. La méthodologie présentée à
une portée générale mais fut initialement développée pour
l’analyse des classes dans les études de puces. La plupart des
algorithmes disponibles visent à assigner tous les gènes au sein
des clusters. Dans beaucoup d’études biologiques, cependant,
nous sommes plutôt intéressés par identifier les classes les plus
stables et les plus informatives de telle façon que, par exem-
ple, de 20 à 60 gènes seulement soit l’objet d’investigations
complémentaires. Nous souhaitons éviter la contamination de
profils d’expression finement régulés d’un petit nombre de
gènes biologiquement pertinent par des gènes dont le profil
d’expression n’est que faiblement compatible avec le profil
précédent. La ‘Classification Etroite’ a été développée pour
répondre spécifiquement à ce problème. Elle utilise la classifi-
cation de type ‘K-means’ comme un moteur de classification
intermédiaire. La troncature précoce des arbres hiérarchiques
est utilisée pour surmonter le problème de minima locaux
rencontrés avec l’approche K-means. La classe la plus stable
et le et la plus serrée est identifiée de façon séquentielle par
l’analyse de la tendance de certains gènes à être groupés en-
semble lors de rééchantillonnages répétés. Nous validons cette
méthode à l’aide d’un exemple simulé et nous l’appliquons à
l’analyse d’un jeu de profils d’expression dans le cadre d’une
études sur les cellules souches embryonnaires.
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